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Abstract--The term boudinage is used to describe a wide variety of extensional structures in deformed rocks. This 
paper is mainly concerned with boudinage resulting from through-layer extension fractures followed by separation 
of the layer segments, thus forming boudins with more or less rectangular cross-sections. In principle, this process is 
similar to the break up of fibres in fibre-reinforced composite materials extended parallel to the fibre direction. Both 
processes are controlled by the transfer of stress from the matrix to the fibre (or layer) and a mathematical model for 
fibre-matrix stress transfer (the 'fibre-loading' model) is well established. We have used this as a basis for developing 
a stress transfer model for boudinage. The only difference in the basic mathematical formulation results from 
geometric differences between the two systems ; the geometric expressions in the fibre-loading model have, therefore, 
been rederived for the layer-matrix case. 

Stress-transfer theory predicts that the tensile stress in a layer segment rises from a minimum at the end of a segn~nt 
to a maximum at the centre. This behaviour, which is clearly shown by finite-element models ofboudinage structure, 
suggests that extension fracture boudinage develops by successive 'mid-point' fracturing. According to stress-transfer 
theory, the process will continue until a layer is reduced to segments (boudins) all of which are shorter than some 
critical length (for which the tensile fracture strength of the layer is equal to the tensile stress at the mid-point). In 
practice, successive fracturing wiU be influenced by two other factors: (1) in nature the controlling material 
properties (tensile fracture strength, elastic moduli) will not be single-valued but will have a distribution reflecting 
local variations in lithology and microstructure and (2) major pre-deformation flaws may be present in a layer which 
will control the 'starting length' of layer segments. These factors are incorporated with the stress-transfer theory into 
a statistical (Monte Carlo) model for extension fracture boudinage which results in a prediction of boudin aspect 
ratios. The predicted distribution compares very closely with the observed distribution of 91 quartzite boudins 
within Lower Carboniferous slates at Tintagei, Cornwall. 

The stress-transfer model implies that boudin-defining fractures occur sequentially so that inter-boudin gap 
lengths will be unequal. Strain estimates based on boudinage structure will vary according to which part and 
how much of a layer is sampled. A much improved strain estimate is possible based on sequentially closing the 
inter-boudin gaps. The stress-transfer theory also leads to the possibility of estimating palaeostress from boudinage 
structure and is the only model available which predicts an aspect ratio distribution ofboudins formed by extension 
fracture. Other than our own, we know of no published data on boudin aspect ratio distributions. Hence, further 
elaboration of the model is not possible until more field data is available. We hope that our work will encourage the 
systematic measurement of boudinage as well as the development of alternative models. 

INTRODUCTION could also account for structures in the surrounding 
matrix. He postulated that layer-normal compression 

THE TERM boudinage was first coined by Lohest (1909) to induces flow in the matrix parallel to the layer, which 
describe the fragmentation of individual rock layers into causes tensile stresses to develop in the layer, the magni- 
'sausage-shaped' blocks with 'barrel-like' cross-sections tude of which are a function of the compressive stress, the 
which he called boudins. Apart from general descriptions rate of elongation, the viscosity ratio between layer and 
little attention was given to the structure until Cloos matrix, the frictional strength and area of the interface, 
(1947) reviewed the literature and suggested possible and the layer thickness. Using a viscous matrix and 
origins for boudinage. Wilson (1961) suggested a nomen- elastic-brittle layer analysis, Ramberg derived relation- 
clature for boudinage (Fig. la) but this is by no means ships between the compressive stress, flow-rate, tensile 
universally employed and the nomenclature used in this stress magnitude within boudins and size of boudins. 
study is shown in Fig. 1 (b). The first rigorous mechanical These show that the boudin tensile stress depends only on 
explanation of boudinage structure was by Ramberg the dimensions (thickness) of the boudin and the pressure 
(1955) who suggested that of three possible origins - -  gradient in the matrix, while the viscosity ratio controls 
tensile stretching, compression normal to the layer or a only the rate of boudinage development. 
stress couple acting at 45 ° to the layer - -  only the second Since Ramberg's analysis it has been realized that 
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{al series of papers, argues that folding and boudinage are 
( ~ aZ / related structures (requiring only different orientations of 

~ ~ _ _ ~ ( /  ~ length principal stresses) which develop from perturbations at 
~[ thickness the layer-matrix interfaces. This work makes it clear that 

L ~  L ~! viscous layers are much more stable in extension than in 
seporation width shortening and that some non-Newtonian behaviour is 

essential for a layer to become unstable at all (i.e. to show 
{b) pinch-and-swell). This helps to explain the rarity of 

boudinage relative to folding in wholly ductile systems. 
~ ~ ~ _ ~  ( ~  ~ /width However, Smith's boudinage is really pinch-and-swell 

~_thickness structure with an added assumption (mechanically 
L-~ I_ _1 soundly based) that fracture will tend to occur in the neck 

gop length - length -~ regions. He does not consider boudinage in which ductile 
~. , flow is unimportant. Smith's theories, which are sup- 

ex tens ion  direct ion ported by a recent approach by Fullagar (1980) based on 

Fig. 1. Boudinage terminologies : (a) after Wilson (1961) ; (b) this study, vorticity, lead to a prediction that boudin length to 
thickness ratios (using the terms as in Fig. lb) should lie 
between 4 and 6 (his equations are similar to those derived 

boudinage can develop due to shear fracture (e.g. Gay & by Ramberg, 1955). This conflicts with Strrmg~d's (1973) 
Jaeger 1975, Griggs & Handin 1960, Uemura 1965) and predicted range of from 2 to 4 (with support from natural 
that layers below a certain thickness may thin uniformly examples cited by Ekstrom 1975 and Troeng 1975). 
(Gay & Jaeger 1975, Talbot 1970). Talbot further sugges- whereas Talbot (1970) reports values from 2:1 to > 20 : 1 
ted that layer thickness controlled whether extension or in natural boudinage. 
shear fracture occurs. From the preceding comments it is apparent that 

Ramberg (1955) and Wilson (1961) argued that boudin boudinage is a complex structure involving brittle and/or 
shape is determined by the characteristics of the layer, ductile deformations. The picture is further complicated 
with strong brittle layers forming rectangular boudins by the practice of using the term 'boudinage' to refer to 
and more ductile layers forming lenticular boudins, Thus, any structure involving fracture and separation. Thus, 
boudinage should be a useful indicator of relative com- structures differing widely from each other and from 
petence in rocks. However, whereas Ramberg thought Lohest's original are called boudinage (e.g. rectangular 
that boudinage should also reveal information on the and lozenge shaped boudins, pinch-and-swell, fractured 
general forces existing during deformation, Wilson con- minerals, fossils, pebbles and other sucfi inclusions). The 
sidered that only local principal stress directions are terms 'internal' and 'foliation' boudinage have been 
indicated, applied respectively by Cobbold et al. (1971) and Platt & 

In spite of these analyses and suggestions that bou- Vissers (1980) to describe boudinage-like structures in 
dinage is a useful indicator of the conditions existing homogeneous rock masses that are strongly anisotropic. 
during deformation, the structure has received little The term boudinage, therefore, encompasses a wide 
attention, although some of the earlier analyses have been variety of disparate structures, examples of which are 
verified by computer-modelling techniques (e.g. Stephans- shown in Fig. 2, and consequently, it is highly unlikely 
son & Berner 1971, Stephansson 1973, Selkman I978). that there is one single mechanical origin. 
There have also been several attempts to use boudinage In this contribution, we derive a mechanism for the 
structure in strain analysis, either alone (Schwerdtner origin of extension-fracture boudinage, beginning with 
1970) or in conjunction with folded layers or veins (Ramsay recent results obtained by Lloyd & Ferguson (1981) from 
1967, Talbot 1970). Uemura (1965) has argued that shear- elastic-plastic finite element simulations. These authors 
fracture boudinage develops at fold hinges while established that 'hard' layers (i.e. those with a relatively 
extension-fracture boudinage is confined to limbs and, high flow stress level) fracture to form rectangular bou- 
hence, that boudinage could be useful in recognizing dins, with ductile deformation being restricted to post- 
major folds. More recently, Sanderson & Meneilly (1981) fracture modification of the corners; and that further 
have used boudinaged andalusites to determine strain, fracture is possible across the centre of any boudin having 
However, in general, boudinage structure is a rather sufficient length to allow the tensile stress to exceed the 
unpromising finite strain estimator and this may explain fracture strength of the rock (a tendency noted by 
why few geologists have given it much attention. Another Ramberg in his original analysis). Similar behaviour is 
reason could be that, in spite of the analyses by Ramberg shown by cylindrical fibres of one material enclosed in a 
and others, no theory exists for the development of matrix of another (Fig. 3a). Such fibre-reinforced com- 
boudinage along a whole layer; previous analyses have posite materials are important in modern technology 
concentrated on the formation of individual fractures and and their behaviour has been studied in considerable 
boudins, detail. It is our contention that extension-fracture bou- 

A structure similar, in many respects, to boudinage is dinage develops by a stress-transfer mechanism similar to 
pinch-and-swell which involves ductile flow and necking that in the theory of fibre-loading developed to explain the 
but no fracturing. Smith (1975, 1977, 1979), in an elegant strength of fibre-reinforced composites. In the following 



Fig. 2. Examples of different types of boudinage structure. (a) Rectangular boudins caused by layer-normal extension 
fractures; tremolite layer in impure Dalradian marbles, Streamstown Marble Quarry, Connemara, W. Ireland. (b) Extreme 
barrel shaped boudins; amphibolite dyke in quartz-feldspathic gneiss, Sermiligaq fjord, East Greenland (photo courtesy of Dr 
A. E. Wright). (c) Train of boudins with lenticular outlines; serpentinised diopside-tremolite layer in impure Dalradian 
marbles, Streamstown Marble Quarry, Connemara, W. Ireland. (d) Pinch-and-swell structure (note complete separation of 
some 'swells' into lenticular boudins); amphibolite layer in Connemara migmatites, Knock Head, W. Ireland. (e) Internal 
boudinage in foliated Dalradian quartzite (note fracture filled by quartz crystallised from solution); north of Kinloch Rannoch, 
Perthshire, Scotland. (f) Boudinaged inclusions; dolomite segregations in volcanic slates (note quartz-fiilled gap); Barras Nose 

Head, Cornwall, England. 
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Fig. 7. Structures at Tintagel, Cornwall relevant to the stress-transfer model for the development of extension fracture 
boudinage. (a) Extension fracture boudinage of thin quartzite layer in Barras Nose Slates; note that the layer-parallel cleavage 
in the slates curves around the boudins making them appear lenticular rather than rectangular. (b) Tracing of layer shown in (a) 
illustrating main features; note the rectangular shape of the boudins, and the gaps filled by quartz crystallized from solution. (c) 
Further example of rectangular extension fracture boudinage of thin quartzite layers in Barras Nose Slates; note that the 
quartz, crystallized from solution, occupies only the gap regions adjacent to boudin ends, the rest of the inter-boudin gap being 
filled by matrix. (d) Example of inbuilt flaws in a relatively undeformed layer; load structures in sandstone layer in inverted 
turbidite sequence at Millook Haven, Cornwall. The frequency of flaws is much greater than that predicted for the Tintagel 

boudinage. 
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Fig. 3. Fibre-composite materials: (a) system geometry and (b) stress-strain curves. 

sections, we outline the main features of this theory and EI, Young's modulus of fibre; e, far field matrix strain ; 1, 
the modifications necessary for it to provide a mathemati- fibre length ; x, distance from end of fibre (0 < x < l); Gin, 
cal model of extension-fracture boudinage, shear modulus of matrix ; A j-, cross-sectional area of the 

fibre; Ro, mean distance between adjacent fibres and r, 
fibre radius. 

MECHANICS OF COMPOSITE MATERIALS Equation (1) shows that the tensile stress in a fibre 
builds up from the ends and is a maximum at the centre 

Fibre loading (Fig. 4). Using this equation, the shear stress ~ at the 
fibre-matrix interface can be determined (Kelly 1973, 

The theory of fibre loading was first outlined by Cox p. 179) which shows that the maximum values occur at 
(1952) and developed by Kelly (1973). Consider a corn- the fibre ends and the minimum value at the centre. 
posite body, consisting of a single fibre of one material When the tensile stress which is transferred to the fibre 
embedded in an isotropic matrix of another, which is exceeds the fibre fracture strength the fibre will break, 
extended parallel to the fibre direction (Fig. 3a). If the ideally across its centre where the tensile stress is a 
stress-strain curve of the matrix has a lower gradient than maximum. The theory, therefore, predicts a range of fibre 
that of the fibre (Fig. 3b) then the matrix, although segment lengths (Kelly 1973, p. 172, Ohsawa et al. 1978), 
reinforced by the presence of the fibre, will show the lc/2 < l < It, (3) 
greater displacements. Shear strains form on all planes - - 
parallel to the fibre axis and, together with the shear where I is the length of broken fibre segments and lc is the 
stresses, are responsible for distributing the applied load critical length below which the maximum tensile stress 
between the matrix and the fibre (i.e. stress transfer). The cannot exceed the fracture strength; l~ is, therefore, the 
distribution of tensile stress in the fibre is given (Kelly maximum length of broken fibre possible and, according 
1973, p. 177) by: to Ohsawa et al. (1978), is equal to 4/-/3, where l-is the mean 

length of broken segments. 
cosh [fl(l/2 - x)]q 

a = E s e 1 - ~ o ~  ~ i ~ j  J (1) Geologicalfibre-loading 

in which, In the development of mylonitic microstructure in 
polyminerallic rocks some minerals (e.g. quartz) behave in 

F T =F"l fl = LEf a f  In (Ro/r) J m E f A f J  (2) a plastic manner while others (e.g. feldspars) behave in a 
more brittle manner. The specific behaviour of brittle 
minerals may depend on whether there has been any prior 

with the following notation: plastic deformation (White et al. 1980); minerals which 
have suffered a limited amount of plastic deformation (e.g. 
plagioclase, amphibole) commonly show shear fractures 

~ (Allison & Latour 1977), but those which do not show any 
~ evidence of plastic deformation often have extension 

fractures sometimes accompanied by separation of the 
segments. White et al. (1980) compare this behaviour with 

~ similar features in deformed metals and propose two 
~ mechanisms for the fracturing process: (1) 'fibre-loading', 

t I 

=.~6 . . which we have described above and shall return to later 
o 2 4 6 6 ~ 4 ~ s ~ 6 2 4 8 a ~ ,2 ,4 ,6  and (2) the pile-up of dislocations at points along 

FIBRE LENGTH mineral-matrix boundaries, discussed in detail by Mitra 
Fig. 4. Predicted tensile stress variations, as a function of fracture stress, (1978). While the first mechanism predicts a relatively 
alongelastic fibres (length I) according to Kelly's theory offibre-loading, narrow range of segment lengths, the second does not 



360 G.E.  LLOYD, C. C. FERGUSON and K. READING 

w tn 

~ riglcl - //~ britt le 
\ ~ elastic / "fai lure 

Y T I o y e / ~  

I I / / x:o j_ / /  - pont 
/ J  elashc -pla stlc matrix 

strain 

{a} (b) 

\ %, \ 
I \ ,, ~,' X(r) dx ~(y) 

r , ;  ',,,  lrot ;I 
, ,  -ro r(t/2lJ 

x : O  II : ;  ~1 X:,~ X 0 II  

~I ~ "I"I / \ --...dx 
dx 

(c) (d) 

Fig. 5. Layer-composite materials: (a) system geometry; (b) stress-strain curves ; (c) shear stress in a fibre composite and (d) 
shear stress in a layer composite. 

favour any particular length and, hence, the two me- layer and the matrix due to their different material 
chanisms should be distinguishable. Watts & Williams properties. Just as in the fibre-matrix system, shear 
(1980) have proposed that feldspars in a granitoid my- strains form on all planes parallel to the layer and, 
lonite from the North Armorican shear zone have frac- together with the shear stresses, are responsible for 
tured by a fibre-loading process, but Boullier (1980) has distributing the load between the matrix and the layer. If 
suggested, on the evidence of fractured feldspars in a the matrix stress-strain curve has a lower gradient than 
granulite mylonite from the Pan-African mobile belt, that that of the layer then the matrix will show the greater 
although fibre-loading may occur initially it may not displacements (Fig. 5b) but will be reinforced by the layer. 
persist to large strains. We assume that overall the matrix deforms more or less 

The geometric configuration of brittle minerals in a homogeneously but that locally the uniform stress-strain 
ductile matrix is very similar to that of fibre composite state is perturbed by load transfer to the layer. In any 
materials and it is perhaps not surprising that they should reinforced system (whether fibre-matrix or layer-matrix) 
show similar behaviours. The extension-fracture bou- it is reasonable to assume (Cox 1952) that the load P in the 
dinage of a rock layer is much less similar and we must, reinforcing material varies with distance x (from either 
therefore, justify the application of the 'fibre- end) according to 
loading' model to this structure. In the next section, we 
derive an analogous theory for layer-matrix systems. 

dP 
Layer-matr ix  systems dx  H (u - L,). (4) 

Consider a composite body, consisting of a single-layer 
segment embedded in an isotropic matrix, which is For a layer-matrix system u is the longitudinal displace- 
extended parallel to the x-direction (Fig. 5a). Initially we ment in the layer and v is the corresponding displacement 
shall assume elastic material properties. We now need to the matrix would undergo if the layer was absent. H is a 
know how the load is transferred to the layer in order for constant, the value of which depends on the system 
brittle fracture to occur, geometry and the elastic moduli. Hence, by analogy with 

Transfer o f  stress. In the system shown in Fig. 5(a), equation (1) and using subscript s to denote a layer (or 
elastic displacements in the x direction are different for the slab), the distribution of tensile stress in the layer is 
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I cosh [fl (1/2 - x)] ] in which case integration of the shear displacements over 
a = E~ e 1 - cos-h ~ /2- ]  ] "  (5) the ranges (t12, y) and - (t12, y) yields 

f f  , (t/2) 2x (t/2) This equation is derived by recognizing that Ac = 2 dy - - -  (y  - t/2). (12) 
/2 G" G" 

du 
P = E ~ A s ~ ,  (6a) However, Ac = ( v - u )  by definition, and so from 

equation (9), 

dv 
dx e = constant. (6b) G" 

H = w z ( t / 2 )  - w G , / ( y  - t/2). (13) 
(t/2) (y - t /2)  

Differentiating equation (4) and substituting equation (6) 
yields, By analogy with equation (2) and remembering that A, = 

tw, we have 

- ~ /  - e , 6 , .  1 _1/5. 

fl = (y - t /2)  t 
(14) 

which can be solved (Kelly 1973, p. 177) to give 
The rate of increase of stress from the ends to the centre 

P = E~ A s e + Q sinh ( f ix)  + S cosh (fix),  (7) of a layer depends on the value of G J E s  and as expected 

where Q and S are constants. The variable the maximum stress occurs across the centre of the layer. 
fl = (H/E~A~)I/2 Similarly, maximum values of shear stress occur at the 

layer ends with a minimum at the centre. Having con- 
incorporates all the relevant geometric properties sidered how stress is transferred from matrix to layer in an 
of the system. At the ends of the layer P = 0 and the all-elastic system and shown that it is basically the same as 
distribution of tensile stress in the layer is given by that for the fibre-matrix system we can now incorporate 
equation (5) using t7 = P / A  r We now need to derive an this into an analysis of layer fracture. 
expression for fl analogous to equation (2). For a L a y e r  f rac ture .  If the tensile and shear stresses which 
fibre-matrix system the shear stress z(r) in the direction of are transmitted from the matrix to the layer exceed the 
the fibre axis acting on planes parallel to the axis affects, in local fracture stress then the layer will fracture. For a layer 
the limit dx, the circumference of a circle, radius r, of thickness t the maximum increment of stress da 
centered on the fibre axis (Fig. 5c). In contrast in the produced in length dx is equal to the force exerted by the 
layer-matrix system the shear stress acts on two surfaces shear stress, which in turn is given by the product of the 
distance + y from the layer (Fig. 5d), i.e. 2wdx. Thus, for a shear stress and the interfacial area (2w dx z) divided by 
fibre-matrix system d P / d x  = - 2~rz(r) (Kelly 1973, the cross-sectional area (wt) ,  
p. 178) but for a layer matrix system, 

dP da 2z - (15) 
d x  - 2wz(y ) .  (8) dx t 

Combining equations (4) and (8), Integration of this expression shows that the ultimate 
fracture stress of the layer, a ,p  occurs at a distance t a , f / 2 z  

H = - 2 w z ( y ) / ( u -  v). (9) from the layer ends. The maximum length of layer 
If c is the actual displacement in the matrix close to the segment possible (i.e. the critical segment length) is, 
layer then at the layer-matrix interface c = u (assuming therefore, t a , f / z  = ! c since segments longer than this will 
no slippage) while at a distance from the layer equal to y, fracture. There is also a minimum segment length, t a , f / 2 z  
c = v. For mechanical equilibrium of the infinitesimal = lff2, since segments shorter than the critical length 
matrix section, thickness dx, perpendicular to the layer cannot fracture further. The range of layer-segment 
(Fig. 5d) the shear forces at the layer-matrix interface and lengths, l, is therefore, 
at a distance y from the layer must be equal and opposite, t a , f / 2 z  < 1 < ta , i /¢ .  (16) 
i.e. 

Now Ohsawa et  al. (1978) argue that, for fibre fracture, 
- (2wdx) ~(y) = const. = - (2wdx) ¢ (#2). (10) the lengths of broken segments should be uniformly 

In the case of a cylindrical fibre, the area over which the distributed within the permitted range so that, from 
shear stress acts varies with radial distance from the fibre inequality (16), we might expect the mean length of 
(Fig. 5c) but in the layer case this area is constant (Fig. 5d). segment, ~ to be 
The shear strain in the matrix can be written, 

t a u f ~  1- = = (17) 3 ta ,  I 3 l dc  _z(Y)_Z(t/2) (11) / -= \2"  • + T } 2  4 4 ~" 
d y  Gm Gm ¢ 
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However, experiments by Ohsawa et al. (1978) showed Finite element simulations of boudinage 
that fibre lengths are almost normally distributed between 
the predicted limits. Nevertheless, by calculating the mean Support for the stress transfer theory for layer-matrix 
boudin length, the critical length can still be estimated systems comes from elastic-plastic finite-element simu- 
from equation (17) and hence 2/-/3 < 1 < 4/-/3. lations (FEM) of boudinage; for a detailed description of 

Plastic matrix behaviour. If the matrix deforms plasti- this approach see Lloyd & Ferguson (1981). The results 
cally then, as the load is applied, the different displace- of these simulations show that the main features of bou- 
ments in matrix and layer Will result in shear stresses in the dinage are largely determined by the gradients of the 
matrix, close to the layer ends, in excess of those due only stress-strain curves for the boudin and matrix and by the 
to the applied stress. The predicted variation of shear amount of deformation. However, since the simulations 
stress with load for fibre-matrix systems is shown in Fig. are restricted to the post-fracture modification of rec- 
6(a). From the stress-transfer analysis the variation for a tangular boudins formed by an (assumed) extension 
layer-matrix system should be of similar form. At small fracture, they do not account for the development of 
loads P1 (such that "tma x < "lSy, the shear yield stress of the boudinage along an entire layer. Nevertheless the distri- 
matrix) the shear stress at the layer-matrix interface is butions of stresses and strains within and adjacent to 
determined by the elastic behaviour of the matrix. At boudins determined by these simulations are very similar 
higher loads (e.g. P2) plastic deformation occurs in the to those predicted by the stress-transfer model. The least 
matrix, initially near the layer segment ends (x < a in Fig. compressive stress values occur midway between layer/ 
6a). This limits the maximum shear stress to zy ( -  at/2), boudin ends which suggest that further fracture is most 
the shear yield stress of the matrix, which in turn limits the likely half way between the sites of earlier fractures. 
maximum value of the elastic matrix strain to ar/E ; for Furthermore, the simulations show that yield occurs first 
distances x > a away from the layer segment ends, the within the matrix adjacent to the comers of boudins, as 
shear stress decreases as before, predicted by the theory, and that gross variations in stress 

The general effects of matrix plasticity on the tensile and strain are restricted to the end of the boudins, the 
stress distribution in a fibre (or layer) are illustrated in Fig. central regions having nearly uniform values. Differences 
6(b). If "Cma x < zy (e.g. load P1) the distribution of tensile between the finite element simulations and the stress 
stress is as previously described for the all-elastic system, transfer theory are minor and arise because the former 
However, when the load (e.g. P2) is sufficient to cause yield contain no fracture criterion which would tend to limit the 
in the matrix near the ends of a layer segment (say, x < a) values of the stresses and strains. 
the longitudinal strain within the layer is substantially 
different from that just outside the layer. The constant 
shear stress (z = zy) in the plastically-deforming matrix Implications for natural boudinage 

causes a steep (and, from equation 15, a linear) increase in 
the tensile stress within the layer, while beyond the region The close similarity between the FEM simulations and 
of matrix plasticity (x > a) the extra tensile stress is the modified theory of fibre loading suggests to us that 
elastically transferred as before. As more of the matrix stress transfer is a possible mechanism for the develop- 
deforms plastically, a correspondingly greater proportion ment of extension fracture boudinage. It is worth men- 
of the layer is affected by the linear increase in tensile stress tioning that since axisymmetric FEM analyses ofcylindri- 
until, eventually, the ultimate fracture stress, au:, may be cal fibre composites by Agarwal et al. (1974) are very 
reached midway between the layer ends (case P3 in Fig. similar to those presented here, then the difference in 
6b.). However, if the maximum tensile stress in the layer is geometry between the two systems has very little effect on 
less than tru: even when all the adjacent matrix has yielded the qualitative behaviour. 
(case P4), fracture is only possible if further load is applied Before considering some natural examples it is worth 
thus increasing the shear stress and, therefore, the gradi- discussing some of the implications of a stress-transfer 
ent dtr/dx (case Ps). model for boudinage. Stress transfer requires that frac- 

ture, separation and, if the layers are able to deform 
plastically, ductile deformation, occur simultaneously at 
different parts of the layer. The break up of a layer by 
extension fracture is not a single event but occurs 
sequentially so long as the boudins are long enough for 

oof . . . . . . . . . . . .  the deviatoric tensile stress across their centre to exceed 
P2 - ~y the fracture strength of the rock. Thus, inter-boudin gap 

~ ~ lengths will not be equal, early fracture sites being 
~ ~ ' ~ , ~ '  indicated by larger gaps than later ones. Strain estimates 

,, 

P1 ~ _~ Pl ! based on boudinage should take into account the sequen- 
- tial development of the structure (Ferguson 1981). Ductile 

o o ~ ~ ~/2 ~ matrix deformation is aided by the presence of boudins, 
I o I I b t especially close to boudin corners which act as local stress 

Fig. 6. Theoretical stress variations for elastic-fibre (or layer), raisers enabling the yield stress to be exceeded more 
plasti~matrix composites. (a) Shear stress and (b) tensile stress, readily. 



Stress-transfer model for development of boudinage 363 

COMPARISONS WITH NATURAL BOUDINAGE 11 
o 

o 

The stress-transfer theory derived above predicts that 10 ~ ~ c  
o 

the length distribution of boudins resulting from exten- 9 
sion fracture boudinage of a layer is constrained by a 
critical boudin length I c. This length is the shortest length 8 ° 
of layer segment which can fracture because, in shorter 
segments, the tensile stress nowhere exceeds the tensile 7 ° o °/~o 
strength of the layer. Therefore, in natural boudinage ~ : /  ° 
formed by a stress-transfer type mechanism, the distri- ~ 6 
bution of boudin length/thickness (aspect) ratios should 

J ¢ / z  be predictable. In this section, we explore this possibility ~ 5 
by comparing the model predictions with measurements -~ ~-~i 
of 91 boudins from Tintagel, Cornwall. ~ ~ / ~  i! General  geo logy  3 

The rocks at Tintagel are Upper Devonian and Lower 
Carboniferous slates and phyllites (McKeown et al. 1973) 
which display a strong penetrative cleavage, in the main 1 
subhorizontal and parallel to bedding (Fig. 7a). The 
detailed interpretation of the structural geology is still the ~ 2 3 ~ ~ 6 ~ 
subject of much debate (cf. Wilson 1951, Freshney et  al. M~o~ boo~ L~ogt, / t h ,~k~  
1972, Sanderson & Dearman 1973, Hobson & Sanderson Fig. 8. Initial comparison of natural boudinage with stress-transfer 
1975) and is complicated by the presence of numerous theory. Ninety-one boudins on a plot of length/thickness vs mean 
low-angle faults, mostly subparallel to both cleavage and length/thickness per layer; the lines marked I~ and I J2 are the upper and 
bedding. Although many styles of boudinage occur in the lower limits predicted by the stress-transfer theory (see text). 

region (including pinch-and-swell structure, internal 
boudinage and deformed tectonic, sedimentary and vol- 
canic inclusions), our measurements are restricted to the available for quartzite and slate, the critical length 
boudinage of thin quartzite layers within the slates and distributions being derived from these via the method of 
phyllites which clearly originated by extension fracture, repeated sampling known as the Monte Carlo method 
Boudins are, therefore, rectangular or sub-rectangular (Ferguson & Harvey in press). 
and subsequent separation of the boudins has left gaps 
filled both by matrix and by quartz crystallised from 
solution; examples are shown in Fig. 7. In all, we have 
measured eight layers containing a total of 91 boudins. All MATHEMATICAL BASIS OF  THE MODIFIED 
sections measured were within 10 ° of a well developed STRESS-TRANSFER MODEL 
extension lineation ; sections normal to this do not exhibit 

boudinage of the quartzite layers. Equation (5) shows that the maximum tensile stress in a 

Ini t ia l  comparisons  layer occurs at its centre; we can therefore write 

Figure 8 shows that the agreement between the Tin- a~,~ = trlx=~/2 = E~e[1 - sech (fill2)]. (18) 
tagel boudinage and the basic theory of stress transfer is 
not particularly good. In only three of the eight layers are If the ultimate tensile strength of the layer is tr=s the layer 
the boudins contained within the predicted range; will fracture when t r = f / a ~  < 1. The condition t r=f / tr~ x 
overall, 21% of the boudins fall outside the predicted limits = 1 therefore defines a local critical length (It) and so, 

and, in one layer, more than half the boudins do so. The 
most likely reason for these discrepancies is that, whereas tr=I = 1. (19) 
the basic theory assumes homogeneous materials, natural E~ e(1 - sech ('ill J2) 
rock systems are unlikely to be homogeneous. In the next 
section we therefore develop a more sophisticated model It is reasonable to assume that the matrix strain, e, remote 
for stress-transfer boudinage. This model recognises that from the layer will be determined by the mean values of 
parameters such as tensile fracture strength and elastic tr=s, E, and Gin. For a prescribed l~ (say l~ = z) we can 
moduli will vary from point to  point throughout a rock therefore calculate a value, e*, such that these mean values 
mass, and that these variations will result in a distribution satisfy equation (19). Hence, 
of critical lengths which, in turn, will control the distri- 

#=f bution of boudin lengths. Model parameters and their e* =elt  ' =z = / ~ [ 1  - sech ( f l z /2)]  (20) 
distributions are based on the limited experimental data 
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Fig. 9. Truncated normal distributions used in the Monte Carlo simulations : a,/, ultimate fracture stress; G,,, shear modulus 
of the matrix (slate); E,, Young's modulus of the layer (quartzite}. 

in which, from equation (14), C O M P U T E R  SIMULATIONS AND 
COMPARISON WITH TINTAGEL BOUDINAGE 

{ 6,. ~t,,2 
f l=  ~ £ , ( y ~ t / 2 ) t }  ' (21) There are three main steps involved in simulating a 

distribution of boudin lengths. These are:(1) calculation 
the overbars denoting mean values, of random I c values which take into account the distri- 

Treating e* as a constant for a given value of z we can buted (rather than single-valued) nature ofa . i ,  E s and G,. ; 
now select random values of or,i, E~ and G,. from (2) a mid-point fracturing procedure and (3) repeated 
appropriate distributions in order to calculate the cor- sampling to build up a distribution, followed by testing of 
responding random value of I c. Thus we have, the observed boudin distribution for goodness-of-fit to the 

simulated (predicted) distribution. These steps are now 

f(lc) = Esc*(1 - sech [fllJ2)]) - a.j, = 0 (22) discussed in turn. 

which leads to the Newton-Raphson formula, Random I c values 

(lc)i+ t = (Ic)i This involves straightforward application of equation 
(23). That is, from each of the parameter distributions 

1 - sech [fl(l~)d2 ] - a, i /E  ~ e* 
- (23) shown in Fig. 9, a random value is drawn using a normal 

0.5flsech[fl(l~)J2] tanh [fl(lc)i/2]" pseudo-random number generator (Marsaglia et al. 
1964). Equation (23) is then solved iteratively using a 

where the starting value of l, is the value z used to calcu- starting value of (l~)i = z to yield the corresponding 
late e*. random value of lc. Repeated application allows one to 

The main input requirements for the model are, there- build up a distribution of I c values to replace the single 
fore, data on tensile fracture strength of quartzite (a,i), value which would correspond to the mean values of a, i ,  
shear modulus of slate (G.) and Young's modulus of E, and G,,. 
quartzite (E,); in each case a distribution of values is 
required rather than a single value. Due to the paucity of Midpoint fracturin,q 
relevant experimental data deriving these distributions 
has proved to be the most difficult part of the study. The It is easy to visualize the sequential break-up of an 
final distributions used are shown in Fig. 9, their deri- initial layer segment by midpoint fracturing until the 
vation being discussed in detail in the Appendix. Through- fragments (boudins) are all of length I < I c. For example, if 
out the simulations described in the next section the we assume an initial layer segment of unit thickness and 
boudinaged layer is assumed to be 2 cm thick and the length 300, and a critical length of l c = 8 then successive 
mean spacing between boudinaged layers is taken as midpoint fractures will lead to length reduction according 
50cm. These dimensions are appropriate to the scale of to 300 ~ 150 ~ . . . .  9.375 ~ 4.6875. On the other hand, 
most of the Tintagel boudins, with an initial length of 250 we have 250 ---, 125 --, ... 

15.625 ~ 7.8125. The large difference in final boudin 
length is because the 300 ~ sequence requires six suc- 
cessive midpoint fractures to ensure l < l~ while the 250 --* 

i L,___~---L 2 .~ -L3-~'  ~---L.--~. sequence requires only five. Even if lc values are drawn 
: : ' : ' ' from a distribution as outlined above, and the initial layer 

o [ ' ] I I ~ ~ ~] [-'-] ~ segments are also drawn from a distribution, this sample 
bisection effect can profoundly influence the final length 

b I I [ I I I ,l ~ ] [~  I I distribution. Clearly our choice of initial layer segment 
, length is not an arbitrary matter and must be determined 

~- - -L~  - ,i L~----~, ~Lo_,~ in some way from the field data. Now, even in an 
Fig. 10. Notation used in estimating the'reversed history'ofboudinage undeformed sequence rock layers are not uniform and 

development (see text), continuous for very large distances. They contain a 
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number of inbuilt major flaws (e.g. joints, sedimentary Our distribution of initial lengths is, therefore, set up by 
features, etc.) which we take to represent natural boun- generating four random flaws from the uniform distri- 
daries defining initial layer segments (e.g. Fig. 7d). If we bution between 0 and 276, thus defining five initial 
simulate many such randomly located major flaws, the boudins. The analysis then proceeds with the corn- 
final length distribution of boudins after successive mid- putation of a random critical length as outlined earlier, 
point fracturing will contain more short boudins than if successive bisection of the first initial boudin until its 
we simulate few. Indeed, if two major flaws happen to be length is less than the critical length, and so on for the 
separated by a distance d < Ic then they immediately other four initial boudins. Thereafter four new initial flaws 
define a final boudin length, and if d < lff2 the boudin are generated in another 2.76 m layer segment and the 
length will fall outside the range predicted by simple procedure repeated until a suitable number of boudin 
stress-transfer theory. It would of course be possible to lengths have been determined. 
choose (by trial and error) the number of flaws per unit 
length of layer that would optimize the fit between Comparison between predicted and observed boudin 
predicted and observed boudin length distributions; we distributions 
prefer instead to determine an appropriate number of 
major flaws from careful analysis of our data on the The steps outlined above are repeated 10,000 times 
Tintagel boudinage. This is made possible because our (with a new random value of l~ each time) in order to build 
measurements include not only the aspect ratios of up a distribution of boudin lengths appropriate to the 
boudins but also their order within the boudinaged layer chosen value of z (which, in effect, determines the mean 
and the width of each inter-boudin gap. boudin length). Several such simulations, each of size 

We assume that boudinage development is a sequential 10,000, are performed using different values of z so that a 
'fracture and separation' process so that, broadly speak- set of cumulative probability curves are derived (Fig. 12). 
ing, large inter-boudin gaps correspond to early fracture From each of these curves the boudin lengths defined by 
sites and small gaps to later ones. A reversed history of the 10th, 20th . . . . .  90th percentiles (110,12o . . . .  19o ) are read 
boudinage development can, therefore, be derived as off and marked on the boudin length vs mean boudin 
follows (see Ferguson 1981). A boudinage system, corn- length plot, their location on the abscissa being de- 
prising n + 1 continuously exposed boudins in a single termined by the mean value 

layer, is partitioned into subsystems of length Li (i = 1, n) /-= (110 + leo + 15o + 17o ÷ 19o)/5. 
as shown in Fig. 10(a). The system, in which for simplicity 
the boudins are treated as passive mechanical elements, is The sets of corresponding percentile points are then 
considered to shorten parallel to the layer in 0.5% joined by smooth curves as shown in Fig. 13. Note that 
increments; that is, the natural strain increment is In these curves do not yield a sharply-defined minimum 
(0.995). The steps in our procedure are then as follows : (1) boudin length. This is because two major flaws could be 
Determine which subsystem requires the least number of very close together so that very small boudin lengths are 
shortening increments in order to reduce its inter-boudin possible even though their probability is small. 
gap to less than 1 mm (at which point the gap is A comparison between the predicted number of bou- 
considered to be closed); note this number of increments, dins falling in the intervals so determined and the observed 
S. (2) Apply Sincrements of shortening to each subsystem, numbers has been made and evaluated using the Z2 
(3) Relabel the subsystem lengths as shown in Fig. 10(b). goodness-of-fit test. The agreement (Table la) is close, the 

Steps (1)-(3) are then repeated until all inter-boudin calculated X 2 value being very much less than the critical 
gaps are closed, thus yielding a set of S values, S~ (i = 1, n) probability of 0.05 with 9 degrees of freedom (X 2 = 16.92). 
corresponding to the n inter-boudin gaps. Note that much of the discrepancy between observed and 

This procedure has been applied to one of the Tintagel predicted numbers is in the low tail region ; overall the 
layers (layer 4, see Fig. 13) consisting of 33 boudins and its agreement is very good but there are more small aspect 
S-value histogram is shown in Fig. 11. We now argue that, ratio boudins than predicted. It is tempting to suggest that 
because of the progressive shortening employed in our the fracture and separation analysis of layer 4 has led to 
analysis, a layer devoid of major inbuilt flaws would yield 
a set of small S-values with rather little dispersion since 
most subsystems would be very similar. The S-value 
histogram for layer a shows this feature but also includes a o'~ 8 i ~  ' 
small number of S-values that are distinctly larger than t~ 6 
the rest. It seems reasonable to interpret these outlying "6 2 
values as representing major flaws or inbuiit fractures o 0 , ~ ,  , n ,  ~ ~], ;~ p 
which allowed substantially greater amounts of sepa- 0 2 l. 6 8 10 12 14 16 60 62 
ration away from these sites early in the extensional 

S ( increments of 0-5% shortening ) history of the layer. On this basis layer 4 contained at least 
four major flaws in an initial layer segment of length 2.76 m 

Fig. 11. S-value histogram for layer 4 at Tintagel. Each S-value used to 
(the sum of the 33 boudin lengths). Unfortunately, the construct the histogram is the number of increments of 0.5% shortening 
other layers measured at Tintagel contain too few boudins required to close an inter-boudin gap as shown in the model summarized 
to warrant a similar analysis, in Fig. 10. 

S G  4 : 3  - H 
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Fig. 12. Cumulative probability curves of boudin aspect ratios derived from the Monte Carlo simulations with inbuilt major 
flaws. Each curve is built up from 10,000 randomly generated boudin lengths (assuming that an initial layer segment of 2.76 m 
contains four initial flaws) and is labelled with the critical length, z, used in the simulation (see text and equations 20 and 23). 

slight underestimation of the number of inbuilt major DISCUSSION 
flaws. But let us first ask how layer 4 alone performs in the 
goodness-of-fit test. We cannot, of course, make the The boudin aspect-ratio distribution predicted by the 
comparison using 10-percentile intervals because the ;(2 stress-transfer model is impressively close to the observed 
test requires a minimum expectation of five for each distribution of boudins at Tintagel. It is important, 
comparison interval. Using 20 per cent intervals (Table lb) therefore, to emphasize the special nature of the simu- 
we see that the fit is excellent, the Z 2 value being very much lation developed in the previous sections. The model is, in 
less than the 95% confidence value with four degrees of a sense, statistical and yet we have made no attempt to 
freedom (X2= 9.49). Furthermore, the discrepancies are select material properties and layer characteristics in 
not concentrated in the smallest aspect-ratio interval. This order to maximize goodness-of-fit between the model 
suggests that had we been able to determine a number of predictions and the field measurements. The material 
inbuilt major flaws for each layer, the overall comparison properties used have been derived, directly or indirectly, 
between model predictions and observations would have from published experimental work on quartzite and slate. 
been even better than that shown in Table l(a). The inbuilt flaw properties of the simulated layers have 

been derived from analysis of the boudin length and gap 
length measurements collected in the field. The final 

Table 1. Chi-squared goodness-of-fit between the numbers of boudins agreement between the predictions of stress-transfer 
occurring in the intervals marked on Fig. 13 and those predicted by the theory and the observed boudin aspect-ratio distribution 
stress-transfer theory. (a) All ninety-one boudins; (b) thirty-three therefore ranks as  a n  important corroboration of the 

boudins in layer 4 theory. But in interpreting this result we should be clear 

Percentile N u m b e r  Number about the following two points" statistical significance 
interval observed expected Z ~ and model generality. 

(a) > 90 7 9.1 0.4846 
90-80 10.5 9.1 0.2154 Stat is t ical  signif icance 
80 70 12.5 9.1 1.2703 

70-60 9 9.1 0.0011 In setting up a chi-squared test we are proposing a 
60 50 11 9.1 0.3967 
50-40 3 9.1 4.0890 hypothesized distribution of normalized boudin lengths. 
40-30 8.5 9.1 0.0396 Stated rather formally, if the percentile intervals marked 
30- 20 8 9.1 0.t 330 on Fig. 13 are labelled i = I, 2 . . . .  m and the total number 
20- 10 6.5 9.1 0.7429 

< 10 15 9.1 3.8253 of boudins measured is N, then we are testing the null 
- -  hypothesis 

11.198 
(b) > 80 4.5 6.6 0.6682 H o" n i = N / m  fo r  a l l  i, 

80-60 8 6.6 0.2970 
60-40 9.5 6.6 1.2742 where n i is the number of boudins in the ith percentile 
40 20 5.5 6.6 0.1833 interval, against the alternative hypothesis 

< 20 5.5 6.6 0.1833 
Ht:  the ni do not have this distribution. 

2.606 
In choosing a critical probability of 0.05 we are specifying 
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Fig. 13. Ninety-one boudins at Tintagel on a plot of aspect ratio vs mean aspect ratio per layer. The curves are constructed 
using percentiles (as indicated) read offthe probability curve of Fig. 12. The 'layer 4' referred to in the text is the fourth set of 

boudins counting from the left (i.e. with a mean length/thickness of 4.8). 

an acceptable probability of rejecting Ho when it is in fact the fit expected with 'ideal stress-transfer' boudins as it 
true. But we are really interested in the probability of yields as X 2 value below the expected value. Of course we 
accepting Ho even though it is false. It is important to be should not make too much of this value being below the 
clear, then, that in spite of the excellent fit of theory to expected fit for ideal boudins as values above or below the 
data, this tells us nothing very specific about our prob- mean would be equally likely. The point is that 'ideal' 
ability of wrongly accepting the stress-transfer theory, boudins could hardly be expected to perform better in the 
But it does tell us something, as the following thought chi-squared test than the Tintagel boudins actually do 
experiment shows. Let us imagine that a population of perform. Or, stated another way, if we knew the true 
boudins exists somewhere that developed exactly accord- model (i.e. that which controlled in every detail the exact 
ing to the stress-transfer theory; we will call this a development oftheTintagelboudins)wecouldnotexpect 
population of ideal stress-transfer boudins. If we then take a better goodness-of-fit to the true model than we actually 
many samples of 91 boudins from this ideal population, get to the stress-transfer model. In short, with a sample of 
plot them on the diagram (i.e. Fig. 13) and perform the chi- one (albeit composed of 91 boudins) the chi-squared test 
squared test (as in Table 1 a) then the X 2 values would vary would in effect be unable to discriminate between the true 
about a mean (expected) value, #, of 9 because in a chi- model and the stress-transfer model. Further progress 
squared distribution # = v, where v is the number of therefore depends firstly on much more field data. 
degrees of freedom. Similarly, using 20-per cent intervals Secondly, only when specific alternative models are 
(Table lb) with samples of 33, the mean value of many chi- proposed can we calculate the probability of wrongly 
squared tests would be 4. accepting the stress-transfer theory relative to the specific 

Now the fit obtained with the layer 4 data is actually alternative. We hope that field geologists and theor- 
closer to a perfect fit to the stress-transfer prediction than eticians alike will take up this challenge. 
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Generality of the model ~3. ,~ 

At first sight it may seem that the stress-transfer model ~ i ~ 
proposed in this paper is very specific, especially as we ~ ~s- 
have gone to some considerable trouble to estimate ~ 

u 

distributions for a, i ,  E s and Gm appropriate to the / 
/ 

Tintagel lithologies. But it must be remembered that we ~ 15 / 
do not know a priori the critical length, 1 c, which controls 
the boudin bisection process. We calculate what the ~ ~ o,o . . . . . . . .  
dispersion of boudin aspect ratios would be for a variety of ~ ~ ' " 

c 

postulated lc (=  z) values as shown in Fig. 12. Had we 5. ' ~ .................... ~; :, 
chosen very different mean values for a,i ,  E~ and G,. the 
dispersion of aspect ratios for a given z would be . . . . . . . . .  , ..... 
essentially the same, although the e* value which controls 20 ~ ~ 60 ' ~ '-~ -~0 

e ~ h m o t e d  extension (%1 

the stress-transfer would be different. In short, the disper- 
sion of aspect ratios is controlled by the dispersion of a, i ,  Fig. 14. Variation in finite strain estimate depending on which part and 

how much of a layer is considered; layer 4 at Tintagel (see caption to Fig. 
Es and G,,, not by the mean values of these parameters. 13)comprising 33 boudins. With 33 boudins there are 29 possible subsets 
The basic model could therefore be applied unchanged for of five adjacent boudins, and strain estimates using these subsets range 
other rock types so long as the shapes of the a , i  and E~ from about 12% to over 90% extension. The 24 possible subsets of ten 

adjacent boudins yield strain estimates ranging from about 22% to 61% 
distributions for the boudin lithology are (or are assumed extension, and so on. Extension, e, is standard using e = [~ (boudin + 
to be) similar to those for quartzite, and similarly for the gap length) - E (boudin length)]/'>" (boudin length). 
shape of the G,, distribution for the matrix lithology. 

In another sense the model is very specific in that the 
cumulative curves of aspect ratio (Fig. 12) are markedly strain which would have occurred had the boudinaged 
dependent on the incidence of major inbuilt flaws, and this layer been absent. 
we have estimated directly from the Tintagel field data. Since, in a stress-transfer process, early fractures in- 
However. we can easily produce new sets of curves fluence the location of subsequent fractures, the resulting 
corresponding to different inbuilt flaw densities, boudinage cannot be a random structure. The sequential 

fracture development suggests that extension-fracture 
boudinage should be a periodic structure of the saturation 

Implications of the stress-transfer model .for layer type (Cobbold & Ferguson 1979). However, Fig. 13 shows 
boudinage that, as the mean aspect ratio of boudins per layer 

increases, the range of individual aspect ratios increases 
In the stress-transfer model, extension fracturing is a leading to an apparent decrease in regularity; there is a 

sequential process. Although we have used an elastic greater probability of boudins having a wide range of 
fracture mechanics approach, some natural fracture bou- aspect ratios while remaining within the framework of the 
dinage may be controlled by elastic-plastic fracture stress transfer model. 
(Lloyd & Ferguson 1981) leading to boudin shapes other Finally, we pointed out earlier that the range of boudin 
than ideal rectangular forms. At any instant during aspect ratios predicted by stress transfer theory depends 
boudinage different parts of an originally continuous on the dispersion of material properties (a,i, E~, G,,) 
layer may be responding by fracture, by locally plastic rather than on the mean values. It should be clear, 
deformation, or by boudin separation. Structures in the however, that if the mean values used correspond fairly 
nearby matrix will be correspondingly varied. Inter- closely to those controlling natural boudinage then very 
boudin gaps will not be of equal length and hence any little further analysis is needed to derive a palaeostress 
strain estimation based on comparing initial and final estimate from boudinage structure. We develop this idea 
layer lengths will depend on which part and how much of in another paper (Ferguson & Lloyd in press) in which we 
a layer is sampled (Fig. 14). Ferguson (1981) demon- use the Tintagel boudinage to provide constraints on the 
strated that the strain estimate will depend also on the evolution of a major overfold at the southern margin of 
timing of the fracture sequence so that two layer segments the Culm Synclinorium, SW England. 
having the same initial and final lengths need not have 
suffered the same amount of extension (Fig. 15). Some of 
these strain-estimation problems can be partly overcome Extension fracture of" brittle minerals and fossils 
by using a strain reversal technique (Ferguson 1981) 
which makes an estimate of the strain due to inhomo- We commented earlier on recent fibre-loading-type 
geneous matrix flow as well as that due to boudin interpretations of mineral fracturing in some mylonites 
separation. This approach substantially improves the (White et al. 1980, Watts & Williams 1980, Boullier 1980). 
accuracy of strain estimates based on boudinage; but The question now arises whether the Kelly theory or our 
because matrix strain occurring before the first fracture modification is the more appropriate model for such 
appeared in a layer segment will be unrecorded, any cases. Of course, except for geometricconsiderations, the 
boudinage strain estimate will be less than the matrix two models are very similar. Ideally, then, the geometry 
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~ ~ ~ ~ ~ A layer segment exceeds the ultimate failure strength of the 
layer. There is, therefore, a critical layer length below 
which further fracture cannot occur. 

~ / / /~ / /~ ' / /~  ~ ~ - ~  ~7~ [~] ~ B (3) Maximum values of shear stress occur at the ends of 
layer segments, which act as local stress raisers promoting 

Fig. 15. Two inclusion fragment trains having the same initial length (Li ductile deformation in the matrix. 
= sum of fragment lengths) and final length (L s = sum of fragment (4) Elastic-plastic finite-element simulations of 
lengths and gap lengths). Using e = (L s - Li)/L + the extension estimate 
is 45.5~ but using the strain reversal method of Ferguson (1981) train B extension-fracture boudinage are in close agreement with 

records more far-field extension (67.2~) than train A (56.2~o). the predictions of the stress-transfer theory. 
(5) Realistic application of stress-transfer theory to 

natural extension-fracture boudinage depends on the dependent features in our analysis should be derived for 
recognition that, in nature, parameters such as the 

the relevant mineral morphology. In practice, we believe ultimate failure stress, layer Young's modulus and matrix 
that the fibre loading analysis should provide a good shear modulus, will vary from point to point. The 
approximation for prismatic minerals while our 
layer-matrix theory is probably better for feldspars, dispersion ofthese parameters is important in controlling 
especially if {010} is well developed. Thereafter, our the dispersion of boudin aspect ratios. 

(6) Natural rock layers are likely to contain randomly 
simulation approach incorporating distributed para- 
meters should be used although some simplifications distributed inbuilt flaws. The number of such flaws per 
may be possible, especially for boudinage of one material unit length of layer can be estimated by recognizing that, 

in any stress transfer mechanism, the largest gaps cor- within another (e.g. rutile needles within quartz). We hope 
respond to the earliest fracture sites. Therefore, very large to report our work on mineral and fossil boudinage in a 

future paper, gaps probably represent the sites of initial flaws. 
One aspect is worth developing here however. The fibre (7) Incorporation of distributed parameters and initial 

loading/stress-transfer model predicts that the presence of flaws into the basic stress transfer model results in very 
close agreement between predicted boudin aspect ratios brittle minerals will enhance ductile deformation in the 
and those observed in examples of natural boudinage nearby matrix because the mineral terminations act as 

stress raisers. As a mineral becomes disrupted by suc- from Tintagel, Cornwall. 
cessive fractures the extra terminations formed will further (8) Extension-fracture boudinage which develops by a 
enhance local ductility. Tewary (1978) has argued that, stress-transfer process may involve simultaneous fracture, 

separations and local ductile deformation at different during fibre-loading deformation, a fibre composite may 
therefore exhibit an increase in overall ductility. Mitra positions in a layer. 
(1978) has argued similarly for some mylonites although (9) By recognizing the sequential nature of fracturing 
he attributed fracturing to dislocation pile-ups at ob- implied in the stress-transfer model, an improved method 

for estimating finite strain from boudinage structure can stacles along the mineral-matrix boundary. For some 
be derived. In some circumstances palaeostress estimates alloys, Adam & E a d y  (1979) showed that a comparable 
are also possible. process may have far reaching consequences because fibre 

fracturing acts as a source for dislocation tangles. These (10) The fracture of mineral grains by a stress-transfer 
may extend from fibre to fibre eventually forming dislo- type mechanism may be important in controlling the 
cation networks and cells which lead to polygonisation development of microstructure in some tectonites, es- 
and grain refinement. It is therefore worth emphasizing pecially mylonites. 
that, although our main concern in this paper is with layer 
boudinage, the stress transfer model may have consider- 
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Table 2. Relative K~¢ dispersion values for different materials 

Material Test method Scaled S.D. Source 

Arkansas Novaculite 3PB 0.075 Atkinson 1980 
Quartz (a plane _L z) DT 0.071 Atkinson 1979a 

" (a plane ± r) DT 0.064 " 
Micrites : 

Fallerans ()/= 2.1) 3PB 0.078 Henry & Paquet 1976 
(r/= 2.6) " 0.077 " 

" (~/= 3.7) 0.064 " 
D'etalans " 0.115 " 
La Vis " 0.018 " 
Muret le Chateau " 0.099 " 

Carrara Marble DT 0.044 Atkinson 1979b 
Tennessee Sandstone DT 0.049 " 
Steel 3PB 0.061 Knot t  1973 Fig. 5.26 

CT 0.058 " 
Aluminium alloy 3PB 0.092 " 

CT 0.100 " 

Test methods are 3PB, three point bend ; DT, double torsion ; CT, compact tension. 
~/is percentage total porosity. Scaled S.D. is the sample standard deviation multiplied 
by the ratio (sample mean)/(Arkansas Novaculite sample mean). 

where a is a measure of crack size and Y is a calibration factor related intensity factors for this rock. However, if we assume that the critical flaw 
to loading geometry, crack configuration and specimen dimensions (see is an axially symmetric circular crack located within the specimen 
Hayes 1978). Unfortunately there are few data on K k for quartzite and normal to the extension direction and that the effects of the specimen 
virtually no reliable data for both tensile strength and K~c from which a boundary surfaces on the stress field of the crack are negligible, then this 
critical crack length could be estimated. The situation is further geometry leads to the calibration factor Y = 2/~/n in equation (24) 
complicated by microstructural considerations. For  example, the sur- (Paris & Sih 1964, p. 39), in which a should be interpreted as the crack 
face energy requirement for a 'grain-size' crack should approximate to radius. We now postulate that critical flaw size will be related to 
the cleavage or grain-boundary surface energy, but the effective surface microstructure in the same way as for Arkansas Novaculite. The mean 
energy for macroscopic fracture is usually an order of magnitude or grain size of Cheshire quartzite is 300/am and, taking the critical crack 
more greater. This is because subcritical crack growth precedes cata- dimension tobe  ten times this length (asin the Novaculite), equation (24) 
strophic failure, the effective surface energy y~ rising as the crack extends yields a value of Kmc = 1.73 M N m -  3;z. 
unt i l fa i lureoccursa tamaximumvalueof? . /aa twhichthecracklength ,  Our concern here is not to estimate a single value of a~s but a 
a, may be several grain diameters (Davidge 1980). This point can be distribution of values. It would be logical to estimate this through a fixed 
illustrated using fracture mechanics data of Atkinson (1980) on fine value of Kic and a statistical description of critical flaw size, but no such 
grained quartzite (Arkansas Novaculite) fractured in three-point bend data on flaw size exist. However, Atkinson (1980) has published data on 
tests. For this geometry the critical stress intensity factor is related to the dispersion of K~, values for Arkansas Novaculite. For  the purpose of 
failure stress through equation (24) in which the model, then, we will treat the critical flaw size as a contrast (to be 

estimated from the microstructure) and we will assume that the Y = 1.93 - 3 . 0 7 ( a / W )  + 14 .53(a /W)  2 - 25.11 ( a / W )  3 + . . . .  
dispersion of KIc values (which presumably reflects local microstructural 

In this calibration (Brown & Srawley 1966), W is the specimen depth, variations) is similar to that for the Novaculite. On this basis we have/~tc 
The experimental results of Atkinson (a,,/ = 70 M N m -  2 ; K t  c = = 1.73 with a standard deviation of 0.097. It may seem difficult to justify 
1.335 MNm - 3/2) are satisfied when a = 97 #m, which is about 10 grain using a K~c dispersion value for only one rock as a guide to that expected 
diameters. These data are not directly relevant to this study because the in another. However, the dispersion values for widely different materials, 
Novaculite is very fine grained and the experiments were conducted at when scaled to the Novaculite sample mean, are mostly close to 
atmospheric pressure. It is known that Kkfor  coarser-grained quartzites Atkinson's Novaculite value (Table 2). This suggests that, in homo- 
is usually about 1.5 MNm-3/2 (B. K. Atkinson, personal communi- geneous materials, wide variations in Kic dispersions are unlikely. 
cation 1980) and is likely to increase with increasing confining pressure. The critical flaw size estimate is based on measurement of 200 grain 
We will therefore estimate K=c using the experimental data of Brace diameters in a typical boudinaged quartz layer from Tintagel. The size 
(1964). analysis was complicated by the presence of larger statically (?) 

Brace's experiments on extension failure of shaped ('dog-bone') recrystallised grains which, so far as they could be identified, were 
specimens of Cheshire quartzite at 60MNm -2 confining pressure excluded. After correction for grain cotmt bias (Sahu1976) and cut-effect 
yielded a tensile strength of 28MNm -2. There are no data on stress (Saltikov 1967)theanalysisyieldsameangrainsizeof84#m.Thecri t ical  

o 
internal penny shaped ~ ~ 0 . = K. //o./a'-Y 

crack, radius a ~ -'- A ~ ur l c /  
a ~ . . . ' ;  " ~ I in which 

sem,ethp'tlcal T a ...... 
sur,aoe crack / . . - - '  " i V  " w 

/ 
I / w / i J  TypeD: Y-- '/-~ +O&St"(wg) - 204 ( ,  gw)' ...... 

Fig. 16. Five types of ideal crack in a layer loaded in tension. Type A, as described in the text ; type B, double edge crack ; type C, 
single edge crack ; type D, central through-layer crack ; type E, as described in the text. K,c calibrations taken from Brown & 

Srawley (1964). 
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failure the K~, calibration for crack Types A and E will be the same and 
I \  ~ \ ~  - -  we will therefore derive our distribution of fracture strength using 

f -  
-= Kid2 x/a. (25) 

};, i i . ~ . . ~  , ( ~ , ~  This leads to a distribution with cry = 52.9 MNm 2 and a standard 
t ~ ~  . .  :~ deviation of 2.57. 
t ~ ~ f  Finally we should mention that, strictly, a in equation (25) is an 

effective crack dimension which may be larger than the actual dimension 
\ by an amount (KJor)2/6n where o~. is the yield strength. This amount is 

Irwin's (1960) estimate of the correction necessary for matching an 
\ elastic-plastic crack to an equivalent elastic crack in plane strain. 

~ ~ J  Because a is large relative t° (KtJar)2 we will ign°re this c°rrecti°n (with 
plastic zone Gy = 100 MNm-  2 the correction would reduce aul by only about 1%). It 
at c e n l r e  - ~  should be remembered, though, that if fast fracture takes place near the 

yield point, neglecting this term may introduce appreciable relative 
errors if the critical flaw size is small. Note also that some workers 

~. introduce a multiplying factor of(l  - v2) - t/2 into the K~, calibrations \ 
(which are essentially two dimensional) in order to improve their 

• accuracy for real plane strain conditions. For quartzite (Poisson's ratio 
Fig. 17. Representation of plastic zone ahead of a mode I elliptical v - 0.1) this correction is also negligible. 
surface crack shows greater plasticity (greater toughness) at surface than 

at centre of layer. Shear modulus of matrix, Gm 

The slate matrix surrounding the boudinaged quartzite layers at 
flaw size has, therefore, been estimated as 840/am in accordance with the Tintagel is of very variable character in thin section. The predominant 
grain size-critical flaw size relationship suggested by the Novaculite very fine grained white mica-quartz assemblage shows many small-scale 
data. variations including graphite-rich layers, quartz lenses, coarser white 

We now need to use the K~, distribution and the critical flaw size mica lenses, and occasional calcite. We know of no experimental data on 
estimate to derive a fracture strength distribution. Figure 16 shows five the dispersion of G values for any single slate. In any case, samples for 
model crack configurations and their Kk calibrations. For natural experimental determination of elastic moduli are usually selected for 
boudinage it seems reasonable to assume that the width, w, of a layer will their homogeneity, and dispersion data would be unlikely to reflect the 
beordersofmagnitudegreaterthanthecracklengthsothatonlythefirst  very heterogeneous response expected in a matrix as variable as the 
term in the calibration for crack types B, C and D need be retained. Tintagel slates. Therefore, in order to provide data for the simulations, 
Similarly the tangent factor in crack type D reduces to 1 because w is very we have taken data for a variety of slates and schists (Birch 1966) in the 
much greater than the crack depth. In choosing between these five hope that the statistical measures derived from a set of different rocks 
models we argue that our assumption of w >> a for natural boudinage will reflect the within-rock variations of a single very inhomogeneous 
suggests that few free edges (pre-existing cracks?) would be present so slate. This procedure yields (7,, = 2.99 × 104 MNm-  2 with a standard 
that we expect very few microcracks of types B and C. A through-layer deviation of 0.73 x 104. 
centre crack (type D) also seems implausible because this would 
presumably initiate either as an internal crack similar to type A or as a Young's modulus of layer, E, 
surface crack similar to type E. In either case we would expect the 
characteristic crack dimension, a, to reach its critical size before the We have used the mean and standard deviation derived from ten 
crack extends through the thickness of the layer. The most likely crack determinations for quartz aggregates (Voi$ht averaged) taken from 
types are, therefore, A and E. For type E we have the limiting Simons& Wang (1971); namely 1.012 × 10"MNm-~with a standard 
calibrations, deviation of 6.9 × 102 

long shallow crack, b/a large: Y = 1.12 ~fn Truncation of distributions 

A problem with Monte Carlo computer simulations in which values 
deep (semicircular) crack, b/a = 1 : Y = 2 / ,~ .  are drawn randomly from normal distributions is that, with large 

simulations, it is possible to draw extreme values that fall outside the 
Note that the semicircular surface crack has the s a m e  K I calibration as limits of the solution set determined by the fixed parameters. The normal 
the internal (type A) crack, while the long shallow surface crack has the distributions for a,s, G~, and E~ have therefore been truncated to avoid 
same calibration as the through-layer centre crack (type D) except for this problem (see Fig. 9). The upper limit for Gin, 3.4 x 104 MNm- 2, is 
the factor 1.12. This factor is a measure of the increased fracture chosen because values much larger than E,/3 seem unreasonable. The 
toughness near the free surface which, in turn, is due to the increased size lower limit, 2.1 × 104 MNm- 2, is chosen to avoid values much smaller 
of the crack-tip plastic zone as conditions change from plane strain (at than the lowest value in the compilation of Birch (1966). Truncation of 
the centre) to more nearly plane stress at the surface (Fig. 17). the normal distributions for a,s and E, exclude only a tiny fraction ofthe 
Consequently we would expect slow crack extension to proceed more total areas beneath the curves; the limits chosen are + 3S where S is the 
easily into the layer thus reducing the ratio b/a. So long as b/a --- 1 at standard deviation. 


